Особенности сварки алюминия
Алюминий — химически активный металл, трехвалентный во всех стабильных химических соединениях. Имеет высокое сродство к кислороду и соединяется с ним даже при нормальной температуре, образуя плотную и прочную окисную пленку Аl2O3, покрывающую поверхность металла и делающую его коррозионно стойким, особенно в кислых средах. Пленка Al2O3 имеет высокую температуру плавления (Тпл = 2050° С), кипения (Tкип = 3500° С) и плотность, большую, чем у расплавленного алюминия (γAl2O3 = 3,85 г/см3). При сварке окисная пленка может погружаться в металл шва, в результате чего существенно ухудшаются его наиболее ценные свойства: коррозионная стойкость, электропроводность. При этом снижаются некоторые механические свойства, могут образоваться поры. В связи с тем, что наличие пленки Al2O3 на поверхности свариваемого металла и электродной проволоки неизбежно, то одной из наиболее важных и трудных задач, которые приходится решать при разработке способа сварки алюминия, является очищение металла сварочной ванны от Al2O3 и выведение ее в шлак. Расплавленный алюминий и его сплавы взаимодействуют практически со всеми газами, составляющими атмосферу,— с кислородом, азотом, водородом, а также с Н2О, СО, СO2 и другими. Наблюдается как химическое взаимодействие с образованием окислов, карбидов, нитридов и других соединений, так и активное растворение газов в алюминии. Растворимость карбидов, нитридов, сульфидов и окислов в алюминии незначительна, они образуют неметаллические включения в металле шва, существенно ухудшающие свойства последнего. Водород, хотя и не образует химических соединений с алюминием, но активно в нем растворяется и обычно занимает более 75% в общем объеме поглощенных алюминием газов. Однако в окружающем нас воздухе свободного водорода содержится сравнительно мало, и его наличием нельзя объяснить высокую степень насыщения алюминия этим газом. Основным поставщиком водорода в зону сварки являются водородосодержащие химические соединения, в том числе и вода, которая может находиться во флюсе, в защитных газах, в адсорбированном виде на поверхности свариваемого металла или электродной проволоки и т. д. При сварке открытой дугой парциальное давление водорода в реакционной зоне существенно повышается за счет влажности окружающей атмосферы. Насыщение водородом алюминия, вероятно, проходит двумя путями: 1) в результате диссоциации паров воды в дуге и растворения атомарного водорода в металле капель или сварочной ванны; 2) в результате химического взаимодействия расплавленного алюминия с парами воды: 2Al + ЗН2O = Al2O3 + 6Н. (66) При протекании этой реакции алюминий одновременно окисляется и насыщается водородом. На основании приведенных выше кратких сведений о взаимодействии алюминия с газами окружающей атмосферы применительно к сварке алюминия можно сделать несколько принципиально важных замечаний: 1) все компоненты окружающей атмосферы в большей или меньшей мере оказывают отрицательное влияние на свойства металла шва; 2) для достижения высокого качества сварных соединений из алюминия или его сплавов необходимо разработать такой метод сварки, при котором реакционная зона была бы защищена от проникновения в нее атмосферных газов; 3) желательно создавать в реакционной сварочной зоне атмосферу, состоящую из пассивных по отношению к алюминию газов, не растворяющихся в нем; 4) целесообразно не только защищать в процессе сварки расплавленный металл от поглощения газов, но и производить активную его металлургическую обработку. В процессе кристаллизации и охлаждения до нормальной температуры алюминий не претерпевает фазовых превращений и сохраняет крупностолбчатую дендритную структуру с преимущественным расположением загрязнений по границам кристаллитов. Такая структура, как известно, способствует образованию кристаллизационных трещин, вероятность возникновения которых еще более усиливается в связи с большим термическим коэффициентом объемной усадки, характерным для алюминия и его сплавов. Одной из радикальных мер, приводящих к повышению стойкости металла шва против образования кристаллизационных трещин, является измельчение его первичной структуры путем модифицирования. Однако при использовании существующих методов сварки алюминия не всегда удается достигнуть этого эффекта. Теплофизические и химические свойства алюминия таковы, что выбор технологического процесса сварки значительно ограничен. Так, например, из-за низкой температуры плавления (Tпл = 658° С), высокой жидкотекучести, малой прочности металла при температурах, близких к Tсол, сваривать алюминий толщиной более 8 мм можно только в нижнем положении и необходимо принимать меры для удержания расплавленного металла, чтобы исключить протекание его. Вследствие высокой тепло- и электропроводности алюминия необходимо применять для его сварки мощные концентрированные источники тепла. Основанием для разработки специального керамического флюса и технологии механизированной сварки алюминия закрытой дугой послужила принципиальная возможность преодоления в этом случае указанных трудностей. К.В. Багрянский. Электродуговая сварка и наплавка под керамическими флюсами. Киев, 1976 г. См. также: Технология сварки алюминия А5 закрытой дугой под флюсом
|