Сварка. Резка. Металлообработка
Сварка  
Резка  
Металлообработка  
Оборудование для сварки, резки, металлообработки
сварка и резка металла металлообработка
Среда, 07.12.2016, 15:27. Вы зашли как Гость
Форум | Главная | Регистрация | Вход | RSS

Профессионально о сварке

Технологии сварки [53]
Сварка различных конструкций [38]
Механизация и автоматизация производства [14]
О сварочном оборудовании в деталях [23]
О сварочных материалах в деталях [18]
Техника безопасности и защита при сварке [24]
Контроль качества сварки [58]
Основы сварки [57]
Сварка в прошлом [14]
Металлы и сплавы [20]
Производители сварочного оборудования [5]
Интересное из мира сварки [9]

Сварка


Пайка. Напыление. Наплавка


Резка


Металлообработка


Справочник


К сведению


Наш опрос

Какая информация на портале Вам наиболее интересна?
Всего ответов: 3393

Добавить в закладки



Наша кнопка

Сварка. Резка. Металлообработка
Получить код кнопки



добавить на Яндекс

Главная » Статьи » Профессионально о сварке » Технологии сварки

Сварка аустенитно-ферритных нержавеющих сталей


Рекомендуем приобрести:

Сварочные столы и плиты TEMPUS - в наличии на складе!
Большой выбор: Стол стационарный, Стол подъемный, Стол пятисторонний, Комплект оснастки
Доставка по всей России!


Состав, структура и назначение сталей

К наиболее распространенным сталям аустенитно ферритного класса относятся стали типа 08Х22Н6Т, 12Х21Н5Т, 03Х23Н6, 08Х18Г8Н2Т, 08Х21Н6М2Т, 03Х22Н6М2.  Микроструктура хромоникелевой стали 08Х22Н6Т и хромо-никель-молибденовой 08Х21Н6М2Т представлена на рис 18.1. Количество аустеннтной и ферритной фаз в сталях этого класса колеблется обычно в пределах 40—60 % Химический состав аустеннтно ферритных сталей приведен в табл 18.1, механические свойства — в табл. 18.2.



Аустенитно-ферритные стали имеют относительно высокие пределы те кучести и прочности прн удовлетворительных пластичности и ударной вяз кости, а также высокую коррозионную стойкость и хорошую свариваемость Это позволяет сократить удельный расход металла при изготовлении химической аппаратуры, рассчитываемой на прочность, благодаря уменьшению толщины листа Согласно диаграмме состояний сплавы Fe—Cr—Ni обладают некоторыми характерными особенностями область существования двухфазной аустенитно ферритной структуры в них находится в интервале температур 20—1350 °С, при нагреве стали выше температуры 1100°С аустенит превращается в феррит и тем интенсивнее, чем выше температура и длительность нагрева, при температуре выше 1200 °С происходит полное γ→α превращение, при последующем охлаждении происходит обратное превращение феррита в аустенит. Конечное соотношение количества структурных составляющих зависит от скорости охлаждения стали При изотермической выдержке в области температур 700—800 °С в стали возможно образование хрупкой составляющей σ фазы. Аустенитно-ферритиые стали поставляются в закаленном состоянии с температур 950— 1050 °С. Разница по содержанию Сг и Ni между аустенитной и ферритной фазами составляет 2—5%. Аустенитно-ферритные стали теряют вязкость при нагреве их в интервале температур 450—650 °С Это связано с тем, что хрупкость, обусловленная выделением карбидов, усиливается действием так называемой 475° хрупкости.

Примерное назначение и температура эксплуатации аустенитно-ферритных сталей указаны в таблице 18.3.


Свариваемость сталей

Аустенитно-ферритные стали отличаются повышенной склонностью к росту зерна в зоне термического влияния при воздействии сварочного термического цикла. Наряду с ростом ферритных зерен возрастает общее количество феррита. Последующим быстрым охлаждением фиксируется образовавшаяся структура. Размеры зерна и количество феррита, а также ширина зоны перегрева зависят от погонной энергии сварки,соотношения структурных составляющих в исходном состоянии и чувствительности стали к перегреву. Соотношение количества структурных составляющих (γ- и α-фаз) в исходном состоянии в значительной степени зависит от содержания в стали Ti. Количеством титана в стали также определяется устойчивость аустенитной фазы против γ→δ-превращения при сварочном нагреве. Чем выше содержание Ti, тем чувствительнее сталь к перегреву (рис. 18.2). Вследствие роста зерна и уменьшения количества аустенита наблюдается снижение ударной вязкости металла околошовной зоны и угла загиба сварных соединений аустенитно-ферритных сталей. Менее чувствительными к сварочному нагреву являются стали, не содержащие Ti,— это стали 03Х23Н6 и 03Х22Н6М2.


Технология сварки и свойства соединений

Аустенитно-ферритные стали можно сваривать как ручной и механизированной электродуговой сваркой, так и другими способами сварки (электроннолучевой, электрошлаковой), плазменнодуговой и др.). Предпочтительнее способы сварки с невысокими погонными энергиями. Техника и режимы сварки аустенитно-ферритных сталей не отличаются от общепринятых для всего класса нержавеющих сталей. При выборе видов швов сварных соединений рекомендуется руководствоваться ГОСТ 5264—69, ГОСТ 8713—70, ГОСТ 14771—69, ОСТ 26-291—71 и стандартами предприятий. Подготовка кромок под все виды сварки производится механическим способом, чтобы исключить возникновение зон термического влияние (ЗТВ), снижающих регламентированные свойства сварных соединений. Сварочные материалы, применяемые для сварки аустенитно-ферритных сталей, приведены в табл. 18.4 и 18.5. Швы соединений, выполненные указанными сварочными материалами, имеют аустенитно-ферритную структуру. Количество ферритной фазы в швах составляет 15— 60 % и зависит не только от применяемых сварочных материалов, но и от доли участия свариваемого металла в металле шва, от колебаний химического состава в пределах марки. Самый высокий процент ферритной фазы в швах наблюдается при автоматической сварке под флюсом встык без разделки кромок проволокой Св-06Х21Н7БТ. Благодаря высокому содержанию феррита швы обладают достаточной стойкостью против образования горячих трещин. Изменение содержания ферритной фазы в шве за счет легирования или термообработки приводит к существенному изменению его механических свойств. Пределы текучести и прочности при достаточно высокой пластичности и вязкости шва достигают максимума при равном процентном содержании в нем аустенитной и ферритной фаз.


Механичекие свойства сварных соединений

Механические свойства швов и соединений, выполненных сварочными материалами, указанными в табл. 18.4 и 18.5, приведены в табл. 18.6. Анализ механических свойств показывает, что самую высокую прочность швов при автоматической сварке под флюсом хромоникелевых аустенитно-ферритных сталей можно получить, применяя проволоку Св-06Х21Н7БТ (ЭП500), а хромоникельмолибденовых — проволоку Св-06Х20Н11МЗТБ (ЭП89). Сочетание достаточно высокой прочности и пластичности достигается при применении для автоматической сварки под флюсом хромоникелевых аустенитно-ферритных сталей проволоки Св-03Х21Н10АГ5 (ЭК-91), а для хромоникельмолибденовых — проволоки Св-03Х19Н15Г6М2АВ2 (ЧС-39). Эти проволоки предпочтительнее применять при сварке стали значительных (>10 мм) толщин встык, без разделки кромок. Для улучшения пластичности сварных соединений аустенитно-ферритных сталей, если позволяют габариты изделий, можно проводить термообработку — закалку от 1000 °С с охлаждением в воде.


Коррозионная стойкость сварных соединений

При сварке изделий, к сварным швам которых предъявляются требования стойкости к межкристаллитной коррозии, слой шва, обращенный к агрессивной среде, должен выполняться последним. В связи с тем, что аустенитно-ферритные стали подвержены охрупчиванию в интервале температур 450—500 и 650— 800 °С, особое внимание при их сварке необходимо обращать на строгое соблюдение режимов сварки и охлаждения изделий. При сварке изделий из металла толщиной 16—20 мм рекомендуется применять обработку границ швов с основным металлом сваркой аргонодуговым способом. Получаемый при этом местный нагрев с малой погонной энергией (q=4200 Дж/см2) участка крупного зерна ЗТВ до расплавления приводит при охлаждении к образованию мелкозернистой ферритной структуры с аустенитными прослойками по границам зерен. Металл с такой структурой пластичнее крупнозернистого феррита, образующегося при сварке в ЗТВ и более коррозионностоек.

При соотношении аустенитной и ферритной фаз, близком к единице, швы стойки как против межкристаллитной, так и против структурно-избирательной коррозии. Такая зависимость коррозионной стойкости от соотношения структурных составляющих объясняется тем, что при 40—60 % α-фазы размеры зерен феррита и аустенита примерно одинаковы, а химическая неоднородность по Cr и Ni между фазами минимальна (рис. 18.3). При уменьшении количества аустенитной фазы в шве или околошовной зоне до 20 % и менее в металле проявляется склонность к межкристаллитной коррозии. Отпуск сварных соединений при 850 °С предотвращает межкристаллитную коррозию сварных соединений.


Структурно - избирательную коррозию можно объяснить разностью электродных потенциалов аустенита и феррита в двухфазном металле, а также разностью поверхностей структурных составляющих в местах контактирования с агрессивной средой. Электродные потенциалы между структурными составляющими в агрессивной среде могут отличаться при разном содержании в них легирующих элементов, обусловливающих коррозионную стойкость металла в данной среде. В окислительных средах (азотная кислота) пассивирующая способность и, следовательно, коррозионная стойкость аустенитной и ферритной фаз металла зависят главным образом от содержания Cr, а в неокислительных (растворах серной кислоты) от содержания Ni и Мо. За ухудшение коррозионной стойкости аустенитно-ферритного металла всегда ответственна аустенитная фаза. Кроме того, в соединениях аустенитно-ферритных сталей всегда имеются участки, отличающиеся по своему электродному потенциалу. Это шов, ЗТВ, основной металл. Такое соединение в электролите представляет собой многоэлектродную систему с несколькими катодами и анодами. Преимущественному растворению в электролите будет подвергаться та часть системы, которая в данном электролите будет иметь наиболее отрицательный электродный потенциал, т. е. будет катодом.

Установлено отрицательное влияние кремния и ванадия в сварочном шве на коррозионную стойкость в окислительных средах сварных соединений из аустенитно-ферритных сталей. Таким образом, при выборе присадочного материала необходимо стремиться обеспечить равенство не только механических свойств шва и основного металла и стойкость шва против межкристаллитной коррозии, но и равенство общей коррозионной стойкости металла всех зон сварного соединения. Необходимо учитывать влияние карбидообразующих элементов (Ti и Nb) на свойства швов в соединениях аустенитно-ферритных сталей, так как для обеспечения стойкости против межкристаллитной коррозии при содержании углерода >0,07 % необходимы стабилизаторы (карбидообразующие элементы). Сталь 08Х22Н6Т стойка в азотной кислоте: 65%-ной концентрации до температуры 50 °С, в 56%-ной до температуры 70 °С, в 30%-ной до температуры кипения. Сталь 08Х21Н6М2Т стойка в муравьиной кислоте независимо от концентрации при температурах до 60 °С, в 30%-ной кипящей и в 85%-ной фосфорной кислоте при T≤80°С, в 10%-ной серной кислоте.

Волченко В.Н. "Сварка и свариваемые материалы".

Категория: Технологии сварки
Просмотров: 13148 | Теги: Сварка аустенитно-ферритных нержаве | Рейтинг: 0.0/0
Всего комментариев: 0

Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Поделиться

Роботизация сварочных процессов



Роликоопоры из наличия



Поиск по порталу

Авторизация



Сварка. Самое читаемое


Резка. Самое читаемое


Обработка металлов. Самое читаемое


Случайное фото


On-line Калькулятор


RSS-ленты

Статьи autoWelding.Блог Схемы, чертежи, фото Предприятия
Профессиональный портал «Сварка. Резка. Металлообработка» © 2010-2016
При перепечатке материалов портала autoWelding.ru ссылка обязательна!